3.5.73 \(\int \frac {\cos ^4(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx\) [473]

3.5.73.1 Optimal result
3.5.73.2 Mathematica [A] (verified)
3.5.73.3 Rubi [A] (verified)
3.5.73.4 Maple [A] (verified)
3.5.73.5 Fricas [A] (verification not implemented)
3.5.73.6 Sympy [F(-1)]
3.5.73.7 Maxima [F]
3.5.73.8 Giac [A] (verification not implemented)
3.5.73.9 Mupad [F(-1)]

3.5.73.1 Optimal result

Integrand size = 31, antiderivative size = 92 \[ \int \frac {\cos ^4(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=-\frac {46 a \cos ^5(c+d x)}{315 d (a+a \sin (c+d x))^{5/2}}+\frac {20 \cos ^5(c+d x)}{63 d (a+a \sin (c+d x))^{3/2}}-\frac {2 \cos ^5(c+d x)}{9 a d \sqrt {a+a \sin (c+d x)}} \]

output
-46/315*a*cos(d*x+c)^5/d/(a+a*sin(d*x+c))^(5/2)+20/63*cos(d*x+c)^5/d/(a+a* 
sin(d*x+c))^(3/2)-2/9*cos(d*x+c)^5/a/d/(a+a*sin(d*x+c))^(1/2)
 
3.5.73.2 Mathematica [A] (verified)

Time = 4.39 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00 \[ \int \frac {\cos ^4(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=-\frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^5 \sqrt {a (1+\sin (c+d x))} (51-35 \cos (2 (c+d x))+40 \sin (c+d x))}{315 a^2 d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )} \]

input
Integrate[(Cos[c + d*x]^4*Sin[c + d*x]^2)/(a + a*Sin[c + d*x])^(3/2),x]
 
output
-1/315*((Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^5*Sqrt[a*(1 + Sin[c + d*x])] 
*(51 - 35*Cos[2*(c + d*x)] + 40*Sin[c + d*x]))/(a^2*d*(Cos[(c + d*x)/2] + 
Sin[(c + d*x)/2]))
 
3.5.73.3 Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.48, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.290, Rules used = {3042, 3356, 27, 3042, 3335, 3042, 3153, 3042, 3152}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^2(c+d x) \cos ^4(c+d x)}{(a \sin (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^2 \cos (c+d x)^4}{(a \sin (c+d x)+a)^{3/2}}dx\)

\(\Big \downarrow \) 3356

\(\displaystyle \frac {\cos ^5(c+d x)}{2 d (a \sin (c+d x)+a)^{3/2}}-\frac {\int -\frac {\cos ^4(c+d x) (4 \sin (c+d x) a+3 a)}{2 \sqrt {\sin (c+d x) a+a}}dx}{2 a^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\cos ^4(c+d x) (4 \sin (c+d x) a+3 a)}{\sqrt {\sin (c+d x) a+a}}dx}{4 a^2}+\frac {\cos ^5(c+d x)}{2 d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\cos (c+d x)^4 (4 \sin (c+d x) a+3 a)}{\sqrt {\sin (c+d x) a+a}}dx}{4 a^2}+\frac {\cos ^5(c+d x)}{2 d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3335

\(\displaystyle \frac {\frac {23}{9} a \int \frac {\cos ^4(c+d x)}{\sqrt {\sin (c+d x) a+a}}dx-\frac {8 a \cos ^5(c+d x)}{9 d \sqrt {a \sin (c+d x)+a}}}{4 a^2}+\frac {\cos ^5(c+d x)}{2 d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {23}{9} a \int \frac {\cos (c+d x)^4}{\sqrt {\sin (c+d x) a+a}}dx-\frac {8 a \cos ^5(c+d x)}{9 d \sqrt {a \sin (c+d x)+a}}}{4 a^2}+\frac {\cos ^5(c+d x)}{2 d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3153

\(\displaystyle \frac {\frac {23}{9} a \left (\frac {4}{7} a \int \frac {\cos ^4(c+d x)}{(\sin (c+d x) a+a)^{3/2}}dx-\frac {2 a \cos ^5(c+d x)}{7 d (a \sin (c+d x)+a)^{3/2}}\right )-\frac {8 a \cos ^5(c+d x)}{9 d \sqrt {a \sin (c+d x)+a}}}{4 a^2}+\frac {\cos ^5(c+d x)}{2 d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {23}{9} a \left (\frac {4}{7} a \int \frac {\cos (c+d x)^4}{(\sin (c+d x) a+a)^{3/2}}dx-\frac {2 a \cos ^5(c+d x)}{7 d (a \sin (c+d x)+a)^{3/2}}\right )-\frac {8 a \cos ^5(c+d x)}{9 d \sqrt {a \sin (c+d x)+a}}}{4 a^2}+\frac {\cos ^5(c+d x)}{2 d (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3152

\(\displaystyle \frac {\frac {23}{9} a \left (-\frac {8 a^2 \cos ^5(c+d x)}{35 d (a \sin (c+d x)+a)^{5/2}}-\frac {2 a \cos ^5(c+d x)}{7 d (a \sin (c+d x)+a)^{3/2}}\right )-\frac {8 a \cos ^5(c+d x)}{9 d \sqrt {a \sin (c+d x)+a}}}{4 a^2}+\frac {\cos ^5(c+d x)}{2 d (a \sin (c+d x)+a)^{3/2}}\)

input
Int[(Cos[c + d*x]^4*Sin[c + d*x]^2)/(a + a*Sin[c + d*x])^(3/2),x]
 
output
Cos[c + d*x]^5/(2*d*(a + a*Sin[c + d*x])^(3/2)) + ((-8*a*Cos[c + d*x]^5)/( 
9*d*Sqrt[a + a*Sin[c + d*x]]) + (23*a*((-8*a^2*Cos[c + d*x]^5)/(35*d*(a + 
a*Sin[c + d*x])^(5/2)) - (2*a*Cos[c + d*x]^5)/(7*d*(a + a*Sin[c + d*x])^(3 
/2))))/9)/(4*a^2)
 

3.5.73.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3152
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x 
])^(m - 1)/(f*g*(m - 1))), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 
 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]
 

rule 3153
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(-b)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + 
f*x])^(m - 1)/(f*g*(m + p))), x] + Simp[a*((2*m + p - 1)/(m + p))   Int[(g* 
Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, 
g, m, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[Simplify[(2*m + p - 1)/2], 0] && 
NeQ[m + p, 0]
 

rule 3335
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d)* 
(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(f*g*(m + p + 1))), x] + S 
imp[(a*d*m + b*c*(m + p + 1))/(b*(m + p + 1))   Int[(g*Cos[e + f*x])^p*(a + 
 b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[ 
a^2 - b^2, 0] && IGtQ[Simplify[(2*m + p + 1)/2], 0] && NeQ[m + p + 1, 0]
 

rule 3356
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^2*((a_) + 
(b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^( 
p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(2*m + p + 1))), x] - Simp[1/(a^2*(2* 
m + p + 1))   Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1)*(a*m - b* 
(2*m + p + 1)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[ 
a^2 - b^2, 0] && LeQ[m, -2^(-1)] && NeQ[2*m + p + 1, 0]
 
3.5.73.4 Maple [A] (verified)

Time = 0.11 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.73

method result size
default \(\frac {2 \left (1+\sin \left (d x +c \right )\right ) \left (\sin \left (d x +c \right )-1\right )^{3} \left (35 \left (\sin ^{2}\left (d x +c \right )\right )+20 \sin \left (d x +c \right )+8\right )}{315 a \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(67\)

input
int(cos(d*x+c)^4*sin(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x,method=_RETURNVERBO 
SE)
 
output
2/315/a*(1+sin(d*x+c))*(sin(d*x+c)-1)^3*(35*sin(d*x+c)^2+20*sin(d*x+c)+8)/ 
cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d
 
3.5.73.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.54 \[ \int \frac {\cos ^4(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=-\frac {2 \, {\left (35 \, \cos \left (d x + c\right )^{5} + 85 \, \cos \left (d x + c\right )^{4} - 73 \, \cos \left (d x + c\right )^{3} - 169 \, \cos \left (d x + c\right )^{2} - {\left (35 \, \cos \left (d x + c\right )^{4} - 50 \, \cos \left (d x + c\right )^{3} - 123 \, \cos \left (d x + c\right )^{2} + 46 \, \cos \left (d x + c\right ) + 92\right )} \sin \left (d x + c\right ) + 46 \, \cos \left (d x + c\right ) + 92\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{315 \, {\left (a^{2} d \cos \left (d x + c\right ) + a^{2} d \sin \left (d x + c\right ) + a^{2} d\right )}} \]

input
integrate(cos(d*x+c)^4*sin(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="f 
ricas")
 
output
-2/315*(35*cos(d*x + c)^5 + 85*cos(d*x + c)^4 - 73*cos(d*x + c)^3 - 169*co 
s(d*x + c)^2 - (35*cos(d*x + c)^4 - 50*cos(d*x + c)^3 - 123*cos(d*x + c)^2 
 + 46*cos(d*x + c) + 92)*sin(d*x + c) + 46*cos(d*x + c) + 92)*sqrt(a*sin(d 
*x + c) + a)/(a^2*d*cos(d*x + c) + a^2*d*sin(d*x + c) + a^2*d)
 
3.5.73.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**4*sin(d*x+c)**2/(a+a*sin(d*x+c))**(3/2),x)
 
output
Timed out
 
3.5.73.7 Maxima [F]

\[ \int \frac {\cos ^4(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{4} \sin \left (d x + c\right )^{2}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^4*sin(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="m 
axima")
 
output
integrate(cos(d*x + c)^4*sin(d*x + c)^2/(a*sin(d*x + c) + a)^(3/2), x)
 
3.5.73.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.91 \[ \int \frac {\cos ^4(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {8 \, \sqrt {2} {\left (140 \, \sqrt {a} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} - 180 \, \sqrt {a} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 63 \, \sqrt {a} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5}\right )}}{315 \, a^{2} d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} \]

input
integrate(cos(d*x+c)^4*sin(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="g 
iac")
 
output
8/315*sqrt(2)*(140*sqrt(a)*sin(-1/4*pi + 1/2*d*x + 1/2*c)^9 - 180*sqrt(a)* 
sin(-1/4*pi + 1/2*d*x + 1/2*c)^7 + 63*sqrt(a)*sin(-1/4*pi + 1/2*d*x + 1/2* 
c)^5)/(a^2*d*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c)))
 
3.5.73.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x) \sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4\,{\sin \left (c+d\,x\right )}^2}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int((cos(c + d*x)^4*sin(c + d*x)^2)/(a + a*sin(c + d*x))^(3/2),x)
 
output
int((cos(c + d*x)^4*sin(c + d*x)^2)/(a + a*sin(c + d*x))^(3/2), x)